Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 97: 129567, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008339

RESUMO

In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.


Assuntos
Inflamação , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Transdução de Sinais , Humanos , Inflamação/tratamento farmacológico , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo
2.
Bioorg Med Chem ; 95: 117508, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931521

RESUMO

Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.1 macrophages. In HEK293 cell-based assays, compound 14 was identified as a potent (IC50 = 4.45 µM), non-toxic, and selective mAC2 inhibitor (vs. mAC1 and mAC5). Such a compound represents a valuable addition to a limited number of small-molecule probes to study the biological functions of individual endogenous mAC isoforms.


Assuntos
Adenilil Ciclases , Organofosfonatos , Humanos , Toxina Adenilato Ciclase , Células HEK293 , Organofosfonatos/farmacologia , Nucleosídeos/química
3.
ACS Omega ; 8(30): 27410-27418, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546609

RESUMO

The search for new drugs against COVID-19 and its causative agent, SARS-CoV-2, is one of the major trends in the current medicinal chemistry. Targeting capping machinery could be one of the therapeutic concepts based on a unique mechanism of action. Viral RNA cap synthesis involves two methylation steps, the first of which is mediated by the nsp14 protein. Here, we rationally designed and synthesized a series of compounds capable of binding to both the S-adenosyl-l-methionine and the RNA-binding site of SARS-CoV-2 nsp14 N7-methyltransferase. These hybrid molecules showed excellent potency, high selectivity toward various human methyltransferases, nontoxicity, and high cell permeability. Despite the outstanding activity against the enzyme, our compounds showed poor antiviral performance in vitro. This suggests that the activity of this viral methyltransferase has no significant effect on virus transcription and replication at the cellular level. Therefore, our compounds represent unique tools to further explore the role of the SARS-CoV-2 nsp14 methyltransferase in the viral life cycle and the pathogenesis of COVID-19.

4.
J Med Chem ; 66(16): 11133-11157, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37535845

RESUMO

FLT3 kinase is a potential drug target in acute myeloid leukemia (AML). Patients with FLT3 mutations typically have higher relapse rates and worse outcomes than patients without FLT3 mutations. In this study, we investigated the suitability of various heterocycles as central cores of FLT3 inhibitors, including thieno[3,2-d]pyrimidine, pyrazolo[1,5-a]pyrimidine, imidazo[4,5-b]pyridine, pyrido[4,3-d]pyrimidine, and imidazo[1,2-b]pyridazine. Our assays revealed a series of imidazo[1,2-b]pyridazines with high potency against FLT3. Compound 34f showed nanomolar inhibitory activity against recombinant FLT3-ITD and FLT3-D835Y (IC50 values 4 and 1 nM, respectively) as well as in the FLT3-ITD-positive AML cell lines MV4-11, MOLM-13, and MOLM-13 expressing the FLT3-ITD-D835Y mutant (GI50 values of 7, 9, and 4 nM, respectively). In contrast, FLT3-independent cell lines were much less sensitive. In vitro experiments confirmed suppression of FLT3 downstream signaling pathways. Finally, the treatment of MV4-11 xenograft-bearing mice with 34f at doses of 5 and 10 mg/kg markedly blocked tumor growth without any adverse effects.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Piridazinas , Humanos , Camundongos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Leucemia Mieloide Aguda/patologia , Pirimidinas/farmacologia , Tirosina Quinase 3 Semelhante a fms/genética , Mutação , Apoptose
5.
Eur J Med Chem ; 260: 115717, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598483

RESUMO

Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.


Assuntos
Microssomos , Quinazolinas , Humanos , Animais , Camundongos , Quinazolinas/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor
6.
Angew Chem Int Ed Engl ; 62(36): e202306828, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37436086

RESUMO

The development of reagents that can selectively react in complex biological media is an important challenge. Here we show that N1-alkylation of 1,2,4-triazines yields the corresponding triazinium salts, which are three orders of magnitude more reactive in reactions with strained alkynes than the parent 1,2,4-triazines. This powerful bioorthogonal ligation enables efficient modification of peptides and proteins. The positively charged N1-alkyl triazinium salts exhibit favorable cell permeability, which makes them superior for intracellular fluorescent labeling applications when compared to analogous 1,2,4,5-tetrazines. Due to their high reactivity, stability, synthetic accessibility and improved water solubility, the new ionic heterodienes represent a valuable addition to the repertoire of existing modern bioorthogonal reagents.

7.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37134237

RESUMO

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Assuntos
Inibidores Enzimáticos , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/metabolismo , Inibidores Enzimáticos/química , Cristalografia
8.
Bioorg Med Chem Lett ; 76: 129010, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36184029

RESUMO

Novel 4-aminoquinazoline-6-carboxamide derivatives bearing differently substituted aryl or heteroaryl groups at position 7 in the core were rationally designed, synthesized and evaluated for biological activity in vitro as phosphatidylinositol 4-kinase IIα (PI4K2A) inhibitors. The straightforward approach described here enabled the sequential, modular synthesis and broad functionalization of the scaffold in a mere six steps. The SAR investigation reported here is based on detailed structural analysis of the conserved binding mode of ATP and other adenine derivatives to the catalytic site of type II PI4Ks, combined with extensive docking studies. Several compounds exhibited significant activity against PI4K2A. Moreover, we solved a crystal structure of PI4K2B in complex with one of our lead ligand candidates, which validated the ligand binding site and pose predicted by our docking-based ligand model. These discoveries suggest that our structure-based approach may be further developed and employed to synthesize new inhibitors with optimized potency and selectivity for this class of PI4Ks.


Assuntos
1-Fosfatidilinositol 4-Quinase , Trifosfato de Adenosina , 1-Fosfatidilinositol 4-Quinase/química , 1-Fosfatidilinositol 4-Quinase/metabolismo , Ligantes , Trifosfato de Adenosina/metabolismo , Adenina , Relação Estrutura-Atividade , Desenho de Fármacos , Simulação de Acoplamento Molecular
9.
Eur J Pharmacol ; 927: 175056, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636520

RESUMO

The goal of this study was to evaluate mixed cortical and hippocampal primary rat postnatal neuronal culture as in vitro tool for identification of N-methyl-D-aspartate receptor (NMDAR) antagonists and to find out, whether this model is comparable with other commonly used primary rat neuronal models differing in their origin (pure cortical vs. mixed cortical and hippocampal) and differentiation state (embryonal vs. postnatal). Induced pluripotent stem cell (iPSC) - derived human glutamatergic neurons have been included in this study as well. First, the cultures were characterized by their neuron/astrocyte composition, the mRNA expression of NR2B/NR2A NMDAR subunit ratios, and the expression of glutamate transporters (GLT1, GLAST). Then, selected endogenous steroids and synthetic neuroactive steroids that have been previously identified as negative allosteric modulators of recombinant GluN1/GluN2B NMDA receptors, were evaluated for their ability to prevent an NMDA or glutamate-induced Ca2+ influx (acute effect) and excitotoxicity over 24 h. Though the neuroprotective potential against excitotoxic stimuli varied among the models studied, postnatal mixed cortical and hippocampal culture proved to be a convenient and robust tool for NMDAR antagonist screening. The most widely used embryonal (E18) cultures offered higher cell yields but at the expense of a higher sensitivity to compounds' cytotoxicity. iPSC-derived neurons were not found to be superior to rat cultures for screening purposes.


Assuntos
Neurônios , Receptores de N-Metil-D-Aspartato , Animais , Células Cultivadas , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Hipocampo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo
10.
ChemMedChem ; 17(1): e202100568, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34636150

RESUMO

A series of acyclic nucleoside phosphonates (ANPs) was designed as inhibitors of bacterial adenylate cyclases (ACs), where adenine was replaced with 2-amino-4-arylthiazoles. The target compounds were prepared using the halogen dance reaction. Final AC inhibitors were evaluated in cell-based assays (prodrugs) and cell-free assays (phosphono diphosphates). Novel ANPs were potent inhibitors of adenylate cyclase toxin (ACT) from Bordetella pertussis and edema factor (EF) from Bacillus anthracis, with substantial selectivity over mammalian enzymes AC1, AC2, and AC5. Six of the new ANPs were more potent or equipotent ACT inhibitors (IC50 =9-18 nM), and one of them was more potent EF inhibitor (IC50 =12 nM), compared to adefovir diphosphate (PMEApp) with IC50 =18 nM for ACT and IC50 =36 nM for EF. Thus, these compounds represent the most potent ACT/EF inhibitors based on ANPs reported to date. The potency of the phosphonodiamidates to inhibit ACT activity in J774A.1 macrophage cells was somewhat weaker, where the most potent derivative had IC50 =490 nM compared to IC50 =150 nM of the analogous adefovir phosphonodiamidate. The results suggest that more efficient type of phosphonate prodrugs would be desirable to increase concentrations of the ANP-based active species in the cells in order to proceed with the development of ANPs as potential antitoxin therapeutics.


Assuntos
Toxina Adenilato Ciclase/antagonistas & inibidores , Inibidores de Adenilil Ciclases/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Halogênios/farmacologia , Organofosfonatos/farmacologia , Tiazóis/farmacologia , Toxina Adenilato Ciclase/metabolismo , Inibidores de Adenilil Ciclases/síntese química , Inibidores de Adenilil Ciclases/química , Antígenos de Bactérias/metabolismo , Bacillus anthracis/química , Toxinas Bacterianas/metabolismo , Bordetella pertussis/enzimologia , Relação Dose-Resposta a Droga , Halogênios/química , Estrutura Molecular , Organofosfonatos/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
11.
J Med Chem ; 64(22): 16425-16449, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34713696

RESUMO

This study describes the discovery of novel prodrugs bearing tyrosine derivatives instead of the phenol moiety present in FDA-approved tenofovir alafenamide fumarate (TAF). The synthesis was optimized to afford diastereomeric mixtures of novel prodrugs in one pot (yields up to 86%), and the epimers were resolved using a chiral HPLC column into fast-eluting and slow-eluting epimers. In human lymphocytes, the most efficient tyrosine-based prodrug reached a single-digit picomolar EC50 value against HIV-1 and nearly 300-fold higher selectivity index (SI) compared to TAF. In human hepatocytes, the most efficient prodrugs exhibited subnanomolar EC50 values for HBV and up to 26-fold higher SI compared to TAF. Metabolic studies demonstrated markedly higher cellular uptake of the prodrugs and substantially higher levels of released tenofovir inside the cells compared to TAF. These promising results provide a strong foundation for further evaluation of the reported prodrugs and their potential utility in the development of highly potent antivirals.


Assuntos
Amidas/química , Antivirais/farmacologia , Descoberta de Drogas , Ácidos Fosfóricos/química , Pró-Fármacos/farmacologia , Tenofovir/farmacologia , Antivirais/química , HIV-1/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Testes de Sensibilidade Microbiana , Fenol/química , Pró-Fármacos/química , Estereoisomerismo , Tenofovir/química , Tirosina/química
12.
Eur J Med Chem ; 222: 113581, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102377

RESUMO

A series of novel acyclic nucleoside phosphonates (ANPs) was synthesized as potential adenylate cyclase inhibitors, where the adenine nucleobase of adefovir (PMEA) was replaced with a 5-substituted 2-aminothiazole moiety. The design was based on the structure of MB05032, a potent and selective inhibitor of fructose 1,6-bisphosphatase and a good mimic of adenosine monophosphate (AMP). From the series of eighteen novel ANPs, which were prepared as phosphoroamidate prodrugs, fourteen compounds were potent (single digit micromolar or submicromolar) inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT), mostly without observed cytotoxicity in J774A.1 macrophage cells. Selected phosphono diphosphates (nucleoside triphosphate analogues) were potent inhibitors of ACT (IC50 as low as 37 nM) and B. anthracis edema factor (IC50 as low as 235 nM) in enzymatic assays. Furthermore, several ANPs were found to be selective mammalian AC1 inhibitors in HEK293 cell-based assays (although with some associated cytotoxicity) and one compound exhibited selective inhibition of mammalian AC2 (only 12% of remaining adenylate cyclase activity) but no observed cytotoxicity. The mammalian AC1 inhibitors may represent potential leads in development of agents for treatment of human inflammatory and neuropathic pain.


Assuntos
Toxina Adenilato Ciclase/antagonistas & inibidores , Inibidores de Adenilil Ciclases/farmacologia , Antibacterianos/farmacologia , Organofosfonatos/farmacologia , Tiazóis/farmacologia , Toxina Adenilato Ciclase/metabolismo , Inibidores de Adenilil Ciclases/síntese química , Inibidores de Adenilil Ciclases/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Bacillus anthracis/efeitos dos fármacos , Bordetella pertussis/efeitos dos fármacos , Bordetella pertussis/enzimologia , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neuralgia/tratamento farmacológico , Organofosfonatos/química , Relação Estrutura-Atividade , Tiazóis/química
13.
Bioorg Med Chem ; 32: 115998, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33440320

RESUMO

In analogy to antiviral acyclic nucleoside phosphonates, a series of 5-amino-3-oxo-1,2,4-thiadiazol-3(2H)-ones bearing a 2-phosphonomethoxyethyl (PME) or 3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) group at the position 2 of the heterocyclic moiety has been synthesized. Diisopropyl esters of PME- and HPMP-amines have been converted to the N-substituted ureas and then reacted with benzoyl, ethoxycarbonyl, and Fmoc isothiocyanates to give the corresponding thiobiurets, which were oxidatively cyclized to diisopropyl esters of 5-amino-3-oxo-2-PME- or 2-HPMP- 1,2,4-thiadiazol-3(2H)-ones. The phosphonate ester groups were cleaved with bromotrimethylsilane, yielding N5-protected phosphonic acids. The subsequent attempts to remove the protecting group from N5 under alkaline conditions resulted in the cleavage of the 1,2,4-thiadiazole ring. Similarly, compounds with a previously unprotected 5-amino-1,2,4-thiadiazolone base moiety were stable only in the form of phosphonate esters. The series of twenty-one newly prepared 1,2,4-thiadiazol-3(2H)-ones were explored as potential inhibitors of cysteine-dependent enzymes - human cathepsin K (CatK) and glycogen synthase kinase 3ß (GSK-3ß). Several compounds exhibited an inhibitory activity toward both enzymes in the low micromolar range. The inhibitory potency of some of them toward GSK-3ß was similar to that of the thiadiazole GSK-3ß inhibitor tideglusib, whereas others exhibited more favorable toxicity profile while retaining good inhibitory activity.


Assuntos
Antineoplásicos/farmacologia , Catepsina K/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Nucleosídeos/farmacologia , Organofosfonatos/farmacologia , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Catepsina K/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Organofosfonatos/síntese química , Organofosfonatos/química , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química
14.
ACS Infect Dis ; 7(5): 1077-1088, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33175511

RESUMO

Schistosomiasis, a parasitic disease caused by blood flukes of the genus Schistosoma, is a global health problem with over 200 million people infected. Treatment relies on just one drug, and new chemotherapies are needed. Schistosoma mansoni cathepsin B1 (SmCB1) is a critical peptidase for the digestion of host blood proteins and a validated drug target. We screened a library of peptidomimetic vinyl sulfones against SmCB1 and identified the most potent SmCB1 inhibitors reported to date that are active in the subnanomolar range with second order rate constants (k2nd) of ∼2 × 105 M-1 s-1. High resolution crystal structures of the two best inhibitors in complex with SmCB1 were determined. Quantum chemical calculations of their respective binding modes identified critical hot spot interactions in the S1' and S2 subsites. The most potent inhibitor targets the S1' subsite with an N-hydroxysulfonic amide moiety and displays favorable functional properties, including bioactivity against the pathogen, selectivity for SmCB1 over human cathepsin B, and reasonable metabolic stability. Our results provide structural insights for the rational design of next-generation SmCB1 inhibitors as potential drugs to treat schistosomiasis.


Assuntos
Catepsina B , Esquistossomose , Animais , Humanos , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Sulfonas/farmacologia
15.
Chempluschem ; 85(8): 1669-1675, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32757364

RESUMO

Bioorthogonal cleavage reactions are gaining popularity in chemically inducible prodrug activation and in the control of biomolecular functions. Despite similar applications, these reactions were developed and optimized on different substrates and under different experimental conditions. Reported herein is a side-by-side comparison of palladium-, ruthenium- and tetrazine-triggered release reactions, which aims at comparing the reaction kinetics, efficiency and overall advantages and limitations of the methods. In addition, we disclose the possibility of mutual combination of the cleavage reactions. Finally, we compare the efficiency of the bioorthogonal deprotections in cellular experiments, which revealed that among the three methods investigated, the palladium- and the tetrazine-promoted reaction can be used for efficient prodrug activation, but only the tetrazine-triggered reactions proceed efficiently inside cells.


Assuntos
Compostos Heterocíclicos/química , Metais/química , Elementos de Transição/química , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Concentração Inibidora 50
16.
Chemistry ; 26(57): 13002-13015, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32275109

RESUMO

All four isomeric series of novel 4-substituted pyrido-fused 7-deazapurine ribonucleosides possessing the pyridine nitrogen atom at different positions were designed and synthesized. The total synthesis of each isomeric fused heterocycle through multistep heterocyclization was followed by glycosylation and derivatization at position 4 by cross-coupling reactions or nucleophilic substitutions. All compounds were tested for cytostatic and antiviral activity. The most active were pyrido[4',3':4,5]pyrimidine nucleosides bearing MeO, NH2 , MeS, or CH3 groups at position 4, which showed submicromolar cytotoxic effects and good selectivity for cancer cells. The mechanism involved activation by phosphorylation and incorporation to DNA where the presence of the modified ribonucleosides causes double-strand breaks and apoptosis.


Assuntos
Ribonucleosídeos/síntese química , Antineoplásicos/farmacologia , Antivirais/farmacologia , Purinas/farmacologia , Ribonucleosídeos/farmacologia , Relação Estrutura-Atividade
17.
J Med Chem ; 63(4): 1576-1596, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32003991

RESUMO

Human cathepsin D (CatD), a pepsin-family aspartic protease, plays an important role in tumor progression and metastasis. Here, we report the development of biomimetic inhibitors of CatD as novel tools for regulation of this therapeutic target. We designed a macrocyclic scaffold to mimic the spatial conformation of the minimal pseudo-dipeptide binding motif of pepstatin A, a microbial oligopeptide inhibitor, in the CatD active site. A library of more than 30 macrocyclic peptidomimetic inhibitors was employed for scaffold optimization, mapping of subsite interactions, and profiling of inhibitor selectivity. Furthermore, we solved high-resolution crystal structures of three macrocyclic inhibitors with low nanomolar or subnanomolar potency in complex with CatD and determined their binding mode using quantum chemical calculations. The study provides a new structural template and functional profile that can be exploited for design of potential chemotherapeutics that specifically inhibit CatD and related aspartic proteases.


Assuntos
Catepsina D/antagonistas & inibidores , Catepsina D/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Sítios de Ligação , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/toxicidade , Células CACO-2 , Catepsina D/química , Ensaios Enzimáticos , Humanos , Cinética , Estrutura Molecular , Pepstatinas/química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/toxicidade , Inibidores de Proteases/síntese química , Inibidores de Proteases/toxicidade , Ligação Proteica , Relação Estrutura-Atividade
18.
J Steroid Biochem Mol Biol ; 189: 195-203, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872014

RESUMO

A broad variety of central nervous system diseases have been associated with glutamate induced excitotoxicity under pathological conditions. The neuroprotective effects of neurosteroids can combat this excitotoxicity. Herein, we have demonstrated the neuroprotective effect of novel steroidal N-methyl-D-aspartate receptor inhibitors against glutamate- or NMDA- induced excitotoxicity. Pretreatment with neurosteroids significantly reduced acute L-glutamic acid or NMDA excitotoxicity mediated by Ca2+ entry and consequent ROS (reactive oxygen species) release and caspase-3 activation. Compounds 6 (IC50 = 5.8 µM), 7 (IC50 = 12.2 µM), 9 (IC50 = 7.8 µM), 13 (IC50 = 1.1 µM) and 16 (IC50 = 8.2 µM) attenuated glutamate-induced Ca2+ entry more effectively than memantine (IC50 = 18.9 µM). Moreover, compound 13 shows comparable effect with MK-801 (IC50 = 1.2 µM) and also afforded significant protection without any adverse effect upon prolonged exposure. This drop in Ca2+ level resulted in corresponding ROS suppression and prevented glutamate-induced caspase-3 activation. Therefore, compound 13 has great potential for development into a therapeutic agent for improving glutamate-related nervous system diseases.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Neurotransmissores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Células Cultivadas , Ácido Glutâmico/efeitos adversos , N-Metilaspartato/efeitos adversos , Neurônios/citologia , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/química , Neurotransmissores/química , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
20.
Steroids ; 147: 4-9, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30296546

RESUMO

Neurosteroids are endogenous steroidal compounds that can modulate neuronal receptors. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated, calcium-permeable ion channels that are of particular interest, as they participate in synaptic transmission and are implicated in various processes, such as learning, memory, or long-term neuronal potentiation. Positive allosteric modulators that increase the activity of NMDARs may provide a therapeutic aid for patients suffering from neuropsychiatric disorders where NMDAR hypofunction is thought to be involved, such as intellectual disability, autism spectrum disorder, or schizophrenia. We recently described a new class of pregn-5-ene and androst-5-ene 3ß-dicarboxylic acid hemiesters (2-24) as potent positive modulators of NMDARs. Considering the recommended guidelines for the early stage development of new, potent compounds, we conducted an in vitro safety assessment and plasma stability screening to evaluate their druglikeness. First, compounds were screened for their hepatotoxicity and mitochondrial toxicity in a HepG2 cell line. Second, toxicity in primary rat postnatal neurons was estimated. Next, the ability of compounds 2-24 to cross a Caco-2 monolayer was also studied. Finally, rat and human plasma stability screening revealed an unforeseen high stability of the C-3 hemiester moiety. In summary, by using potency/efficacy towards NMDARs data along with toxicity profile, Caco-2 permeability and plasma stability, compounds 14 and 15 were selected for further in vivo animal studies.


Assuntos
Androstenóis/farmacologia , Colesterol/farmacologia , Ácidos Dicarboxílicos/farmacologia , Ésteres/farmacologia , Fármacos Neuroprotetores/farmacologia , Pregnenolona/análogos & derivados , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Androstenóis/sangue , Androstenóis/química , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colesterol/sangue , Colesterol/química , Ácidos Dicarboxílicos/sangue , Ácidos Dicarboxílicos/química , Estabilidade de Medicamentos , Ésteres/sangue , Ésteres/química , Células Hep G2 , Humanos , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/sangue , Fármacos Neuroprotetores/química , Pregnenolona/sangue , Pregnenolona/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...